

Atom	Name of element	Atomic number	1s	2s	$2p_x$	$2p_y$	$2p_z$	3s
Н	Hydrogen	1	1					
He	Helium	2	↑↓					
Li	Lithium	3	↑↓	1				
Be	Beryllium	4	↑↓	$\uparrow\downarrow$				
В	Boron	5	↑↓	$\uparrow\downarrow$	1			
C	Carbon	6	↑↓	↑↓	1	1		
N	Nitrogen	7	↑↓	$\uparrow\downarrow$	1	1	1	
О	Oxygen	8	↑↓	$\uparrow\downarrow$	↑↓	1	1	
F	Fluorine	9	↑↓	$\uparrow\downarrow$	↑↓	↑↓	1	
Ne	Neon	10	↑↓	↑↓	↑↓	↑↓	↑↓	
Na	Sodium	11	↑. J.	↑↓	↑↓	ΛŢ	↑↓	1

Electron Configurations Noble Gases and The Rule of Eight

- When two nonmetals react to form a covalent bond: They share electrons to achieve a Noble gas electron configuration.
- When a nonmetal and a metal react to form an ionic compound: Valence electrons of the metal are lost and the nonmetal gains these electrons.

Covalent Compounds •Share electrons. •1 pair = 1 bond. •Octet rule ("duet" for hydrogen) •Lewis structures: Lewis structures: Lewis structures: Notice the charges: In one case they balance, can you name the compound? In the other they do not, can you name the polyatomic ion? More about "formal" charge to come.

Formal Charge

- Equals the number of valence electrons of the free atom minus [the number of unshared valence electrons in the molecule + 1/2 the number of shared valence electrons in the molecule].
- Moving/Adding/Subtracting atoms and electrons.
- · See examples on the board.

Formal charge = number of valence electrons – (number of lone pair electrons +1/2 number of bonding electrons)

Predicting a VSEPR Structure

- 1. Draw Lewis structure.
- 2. Put pairs as far apart as possible.
- 3. Determine positions of atoms from the way electron pairs are shared.
- 4. Determine the name of molecular structure from positions of the atoms.

Lewis Structures / VSEPR / Molecular Models

· Computer Generated Models

Ball and stick models of ammonia, water and methane. For many others see:

http://ep.llnl.gov/msds/pgo/ http://ep.llnl.gov/msds/orgchem/Chem226/Smell-Stereochem.html

Covalent Compounds

- •Equal sharing of electrons: nonpolar covalent bond, same electronegativity (e.g., H₂)
- Unequal sharing of electrons between atoms of different electronegativities: polar covalent bond (e.g., HF)

Bond Dipole & Dipole Moment

- Dipole moments are experimentally measured.
 - · Polar bonds have dipole moments.
 - dipole moment (D) = \Box = $e \times d$
 - (e): magnitude of the charge on the atom
 - (d): distance between the two charges

Table 1.4	The Dipole Moments of Some Commonly Encountered Bonds					
Bond	Dipole moment (D)	Bond	Dipole moment (D)			
н-с	0.4	c-c	0			
H-N	1.3	C-N	0.2			
н-о	1.5	c-o	0.7			
H-F	1.7	C-F	1.6			
H-Cl	1.1	C-CI	1.5			
H-Br	0.8	C-Br	1.4			
н—і	0.4	C-I	1.2			

Bond Polarity

A molecule, such as HF, that has a center of positive charge and a center of negative charge is polar, and has a dipole moment. The partial charge is represented by \square and the polarity with a vector arrow.

Molecular Representations

Empirical Formula, Molecular Formula, Structure: (Lewis, Kekule, Condensed, Line), Visual Model: wireframe, stick, ball & stick, space filling, electrostatic, energy surface

Molecular Representations

Empirical Formula, Molecular Formula, Structure: (Lewis, Kekule, Condensed, Line), Visual Model: wireframe, stick, ball & stick, space filling, electrostatic, energy surface

Worksheet: Organic Molecules I http://ep.llnl.gov/msds/Chem120/226shapes-04.html

Line Drawing and Ball & Stick

Carvone (C₁₀H₁₄O)

8.16 Å (0.816 nm)

 $\underline{http://ep.llnl.gov/msds/orgchem/Chem226/Smell-Stereochem.html}$

Summary

- A ☐ bond is weaker than a ☐ bond
- The greater the electron density in the region of orbital overlap, the stronger is the bond
- The more s character, the shorter and stronger is the bond
- The more s character, the larger is the bond angle